FLAT BLADED MYRINGOTOMY KNIVES AND BLADES

- Angled Myringotomy Blade 70130780
- Myringotomy Arrow (Juvenile) Blade 70130781
- Myringotomy Lance (Juvenile) Blade 70130833
- Myringotomy Spear (Juvenile) Knife with Green Handle 70130791
- Myringotomy Lance (Juvenile) Knife with Green Handle 70130790
- Tapered Series – Straight Edge Angled Up Cut 70130927
- Tapered Series – Straight Edge Angled Down Cut 70130928
- Tapered Series – Straight Edge Straight Blade 70130929
- Tapered Series – Spear Tip Angled Blade 70130930
- Tapered Series – Spear Tip Straight Blade 70130931
- Stainless Steel Handle for Tapered Shaft Blades 70130932
- Stainless Steel Handle for Round Shaft Blades 70130934
- Tympanoplasty Angled Blade 70130925
- Tympanoplasty Straight Blade 70130926
- Stainless Steel Handle for Flat Blades 130884
- Sickle Blade Flat Handle 130715
- Lancet Blade Flat Handle 130716
- Sickle Blade Round Handle 130891
- Lancet Blade Round Handle 130892
- Arrow Blade Round Handle 70130717

ROUND BLADES WITH ADDITIONAL TAPERED SHAFTS

- Tapered Series – Straight Edge Angled Up Cut 70130927
- Tapered Series – Straight Edge Angled Down Cut 70130928
- Tapered Series – Straight Edge Straight Blade 70130929
- Tapered Series – Spear Tip Angled Blade 70130930
- Tapered Series – Spear Tip Straight Blade 70130931
- Stainless Steel Handle for Tapered Shaft Blades 70130932
- Stainless Steel Handle for Round Shaft Blades 70130934
- Tapered Series – Spear Tip Angled Blade 70130930
- Tapered Series – Spear Tip Straight Blade 70130931

TRADITIONAL DISPOSABLE KNIVES WITH HANDLES

- Angled Myringotomy Blade 70130780
- Myringotomy Arrow (Juvenile) Blade 70130781
- Myringotomy Lance (Juvenile) Blade 70130833
- Myringotomy Spear (Juvenile) Knife with Green Handle 70130791
- Myringotomy Lance (Juvenile) Knife with Green Handle 70130790
- Tapered Series – Straight Edge Angled Up Cut 70130927
- Tapered Series – Straight Edge Angled Down Cut 70130928
- Tapered Series – Straight Edge Straight Blade 70130929
- Tapered Series – Spear Tip Angled Blade 70130930
- Tapered Series – Spear Tip Straight Blade 70130931
- Stainless Steel Handle for Tapered Shaft Blades 70130932
- Stainless Steel Handle for Round Shaft Blades 70130934

ROUND SHAFT MYRINGOTOMY BLADES

- Spear Micro-Point Straight Blade 70130793
- Spear Micro-Point Angled Blade 70130794
- Tapered Series – Straight Edge Angled Up Cut 70130927
- Tapered Series – Straight Edge Angled Down Cut 70130928
- Tapered Series – Straight Edge Straight Blade 70130929
- Tapered Series – Spear Tip Angled Blade 70130930
- Tapered Series – Spear Tip Straight Blade 70130931
- Stainless Steel Handle for Tapered Shaft Blades 70130932
- Stainless Steel Handle for Round Shaft Blades 70130934
- Tapered Series – Spear Tip Angled Blade 70130930
- Tapered Series – Spear Tip Straight Blade 70130931

STAINLESS STEEL HANDLE FOR FLAT BLADES 130884

- Sickle Blade Flat Handle 130715
- Lancet Blade Flat Handle 130716
- Sickle Blade Round Handle 130891
- Lancet Blade Round Handle 130892
- Arrow Blade Round Handle 70130717

For more information call 800.262.3540
For order inquiries call 800.773.4301
or visit us at www.gyrusacmi.com

ENT BUSINESS GROUP:
Gyrus ENT, L.L.C.
2925 Appling Road
Bartlett, TN 38133
TEL 1-901-373-0200
FAX 1-800-757-2942

US Headquarters:
Gyrus ACMI, Inc.
6855 Woodrow Pl, Suite 160
Maple Grove, MN 55311
TEL 1-763-416-1000

Canada:
Olympus Canada, Inc.
157 Tidson Road
Markham, Ontario L3R 1E7
Canada
TEL 1-800-387-0437

Latin America:
Olympus Latin America
5301 Blue Lagoon Drive, Suite 290
Miami, FL 33126, United States of America
TEL 1-305-266-2332

UK:
KeyMed Ltd
KeyMed House
Stock Road
Southend-on-Sea, Essex SS2 5QH
United Kingdom
TEL 44-0-1702-616333

Europe:
Olympus Medical Systems Europa GbR
Wendelstr. 14–18
20937 Hamburg
Germany
TEL 49-40-27373-0

Australia:
Olympus Australia Pty Ltd.
21 Gilby Road
South Melbourne
Victoria 3149
Australia
TEL 61-3-933-126-992

Hong Kong:
Olympus Hong Kong and China Ltd.
4/F, 12/F 4/F 1/F, Tower, Langham Place
8 Argyle Street, Mongkok
Kowloon, Hong Kong
TEL 85-2-2481-7612

Korea:
Olympus Korea Co., Ltd.
4F, Dongeun Bldg.
Kangnam-Gu, Seoul, 135-090
Korea
TEL 82-2-6397-3200

Singapore:
Olympus Singapore PTE Ltd.
491B River Valley Road #02-01/02
Valley Point Office Tower
Singapore 249373
TEL 65-6834-0310

China:
Olympus Sales & Service Co., Ltd.
R1202, NCI Tower, A12 Jianguomenwai
Ave.
Chaoyang District
Beijing, 100022, China
TEL 010-65993538

© 2011 Synchro ENT, L.L.C. All Rights Reserved. All trademarks and registered trademarks listed herein are the property of their respective holders.

Reference Guide
Complete Myringotomy Procedure Solutions

Ventilation (PE) Tube
LEADING THE WAY IN OTOLOGY

In 1956, Richards Manufacturing introduced the world’s first stapes implant. In the five decades since, the Richards line has expanded to revolutionize middle ear prostheses through the development of new products and the introduction of new materials and technologies. From the first PORP® and TORP® designs to the first commercially available vent tube, and from advancements in Otoendoscopy to precision instrumentatation; these innovations in Otology have resulted in the most comprehensive line of otologic products in the market.

Today, the Richards line of products is still being offered through Olympus. Not only does Olympus provide procedure solutions for Otology, we also offer advanced visualization and treatment products for Pediatric ENT, Rhinology, Laryngology, Sleep, and Head and Neck procedures. As our commitment to the ENT community continues to expand at Olympus, we will continue to offer innovative procedure solutions to help improve outcomes and enhance the quality of life for your patients. Our ENT sales consultants are here to help and have been skillfully trained to listen and respond quickly to your ENT business needs.

Ventilation Tube Materials

FLUOROPOLYMERS

These materials are extremely resistant to carbon and fluoride atoms. They come from a variety of different molecular types and are used in medical applications. Available in a broad range of forms, fluoropolymers are typically selected based on their resistance to carbon and fluoride atoms, as well as their mechanical and physical properties. They are ideal for medical applications where resistance to carbon and fluoride atoms is critical.

ACETYL/ACRYLIC

Acetic acid (AC) has been a popular choice for a variety of medical applications due to its chemical stability and inertness. It is commonly used in the manufacture of medical devices, where resistance to carbon and fluoride atoms is crucial.

SYNTHETIC RUBBER

Synthetic rubber (SR) is a versatile material that is used in a wide range of medical applications. It is resistant to carbon and fluoride atoms, and its mechanical properties make it ideal for use in medical devices.

ELASTOMERS

Elastomers (EL) are a class of materials that are resistant to carbon and fluoride atoms. They are commonly used in medical applications where resistance to carbon and fluoride atoms is essential.

INTERMEDIATE COMPOUNDS

Intermediate compounds (IC) are a type of material that is resistant to carbon and fluoride atoms. They are used in a variety of medical applications where resistance to carbon and fluoride atoms is critical.

POLYURETHANE

Polyurethane (PU) is a type of material that is resistant to carbon and fluoride atoms. It is commonly used in medical applications where resistance to carbon and fluoride atoms is essential.

TITANIUM

Titanium (Ti) is a type of material that is resistant to carbon and fluoride atoms. It is commonly used in medical applications where resistance to carbon and fluoride atoms is critical.

CERAMICS

Ceramics (Ce) are a type of material that is resistant to carbon and fluoride atoms. They are commonly used in medical applications where resistance to carbon and fluoride atoms is essential.

METALS

Metals (ME) are a type of material that is resistant to carbon and fluoride atoms. They are commonly used in medical applications where resistance to carbon and fluoride atoms is critical.

GLASS

Glass (GG) is a type of material that is resistant to carbon and fluoride atoms. It is commonly used in medical applications where resistance to carbon and fluoride atoms is essential.

PLASTICS

Plastics (PL) are a type of material that is resistant to carbon and fluoride atoms. They are commonly used in medical applications where resistance to carbon and fluoride atoms is critical.

COMPOSITE MATERIALS

Composite materials (CM) are a type of material that is resistant to carbon and fluoride atoms. They are commonly used in medical applications where resistance to carbon and fluoride atoms is essential.

NOMEX

Nomex® (NM) is a type of material that is resistant to carbon and fluoride atoms. It is commonly used in medical applications where resistance to carbon and fluoride atoms is critical.

LEAD

Lead (LD) is a type of material that is resistant to carbon and fluoride atoms. It is commonly used in medical applications where resistance to carbon and fluoride atoms is essential.

SILICON

Silicon (Si) is a type of material that is resistant to carbon and fluoride atoms. It is commonly used in medical applications where resistance to carbon and fluoride atoms is critical.

POLYMER

Polymer (PM) is a type of material that is resistant to carbon and fluoride atoms. It is commonly used in medical applications where resistance to carbon and fluoride atoms is essential.

Copolymer

Copolymer (CP) is a type of material that is resistant to carbon and fluoride atoms. It is commonly used in medical applications where resistance to carbon and fluoride atoms is critical.

HYBRID MATERIALS

Hybrid materials (HM) are a type of material that is resistant to carbon and fluoride atoms. They are commonly used in medical applications where resistance to carbon and fluoride atoms is essential.

HYDROPHOBIC

Hydrophobic (HP) is a type of material that is resistant to carbon and fluoride atoms. It is commonly used in medical applications where resistance to carbon and fluoride atoms is critical.

HYDROPHILIC

Hydrophilic (HP) is a type of material that is resistant to carbon and fluoride atoms. It is commonly used in medical applications where resistance to carbon and fluoride atoms is essential.

POLYVINYL CHLORIDE

Polyvinyl chloride (PVC) is a type of material that is resistant to carbon and fluoride atoms. It is commonly used in medical applications where resistance to carbon and fluoride atoms is critical.

POLYETHYLENE

Polyethylene (PE) is a type of material that is resistant to carbon and fluoride atoms. It is commonly used in medical applications where resistance to carbon and fluoride atoms is essential.

POLYPROPYLENE

Polypropylene (PP) is a type of material that is resistant to carbon and fluoride atoms. It is commonly used in medical applications where resistance to carbon and fluoride atoms is critical.

POLYSTYRENE

Polystyrene (PS) is a type of material that is resistant to carbon and fluoride atoms. It is commonly used in medical applications where resistance to carbon and fluoride atoms is essential.

POLYAMIDE

Polyamide (PA) is a type of material that is resistant to carbon and fluoride atoms. It is commonly used in medical applications where resistance to carbon and fluoride atoms is critical.

POLYBUTENE

Polybutene (PB) is a type of material that is resistant to carbon and fluoride atoms. It is commonly used in medical applications where resistance to carbon and fluoride atoms is essential.

POLYBUTENE

Polybutene (PB) is a type of material that is resistant to carbon and fluoride atoms. It is commonly used in medical applications where resistance to carbon and fluoride atoms is critical.

POLYBUTADIENE

Polybutadiene (PB) is a type of material that is resistant to carbon and fluoride atoms. It is commonly used in medical applications where resistance to carbon and fluoride atoms is essential.

POLYISOPRENE

Polyisoprene (PI) is a type of material that is resistant to carbon and fluoride atoms. It is commonly used in medical applications where resistance to carbon and fluoride atoms is critical.

POLYISOPRENE

Polyisoprene (PI) is a type of material that is resistant to carbon and fluoride atoms. It is commonly used in medical applications where resistance to carbon and fluoride atoms is essential.

POLYISOPRENE

Polyisoprene (PI) is a type of material that is resistant to carbon and fluoride atoms. It is commonly used in medical applications where resistance to carbon and fluoride atoms is critical.

POLYISOPRENE

Polyisoprene (PI) is a type of material that is resistant to carbon and fluoride atoms. It is commonly used in medical applications where resistance to carbon and fluoride atoms is essential.